Designing multispectrally compatible transceiver with constant modulus (CM) constraints is essential for achieving radar and communications coexistence. The resulting problem, due to multispectral and CM constraints along with bivariate coupling, is nonconvex and nondeterministic polynomial (NP)-hard. Existing methods utilize either semidefinite relaxation (SDR) method of relaxing CM constraints, or alternating direction method of multipliers with matrix inversion, resulting in accuracy errors and high computational burden. We observe that multispectral constraints can be reformulated as continuous exact penalty functions, and bivariate transceivers under CM constraints can be projected onto product complex-circular-Euclidean manifold (P$\text{C}^{2}$EM) without relaxation. In light of these features, we propose an adaptive exact penalty product manifold (AE$\text{P}^{2}$M) method without relaxation and matrix inversion. First, we transform the multispectral constraints into penalty functions using the adaptive exact penalty technique. Then, we project the problem onto the P$\text{C}^{2}$EM to decouple bivariate and satisfy CM constraints. Finally, we employ a parallel simplified quasi-Newton method to design transceiver. Compared to current methods, the AE$\text{P}^{2}$M method bring benefits as: first, radar signal to interference plus noise ratio increased by 5.8 dB while energy distribution for communication reduced by $0.13$ dB; second computational burden reduced by approximately $89\%$.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Multispectrally Compatible Transceiver Design for MIMO-STAP Radar and Communication Coexistence


    Contributors:
    An, Dongxu (author) / Hu, Jinfeng (author) / Zhong, Kai (author) / Liu, Tailai (author) / Sun, Fei (author) / Tai, Xin (author) / Zuo, Yongfeng (author) / Li, Huiyong (author) / Xiao, Xiangqing (author) / Gini, Fulvio (author)


    Publication date :

    2025-04-01


    Size :

    4032577 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Sensitivity of MIMO STAP Radar with Waveform Diversity

    Jinping, S. / Guohua, W. / Desheng, L. | British Library Online Contents | 2010


    Sensitivity of MIMO STAP Radar with Waveform Diversity

    Jinping, Sun / Guohua, Wang / Desheng, Liu | Elsevier | 2010

    Free access

    Slow-Time FDA-MIMO Technique With Application to STAP Radar

    Wen, Cai / Huang, Yan / Peng, Jinye et al. | IEEE | 2022