A reconfigurable and scalable architecture called the Direct Space-to-Information Converter (DSIC) is presented for rapid and energy-efficient direction-of-arrival (DoA) finding. In conventional delay-and-sum beamformers (CBF), the tradeoff between scan time, resolution and energy consumption is fixed due to the Nyquist sampling theorem. To accurately detect the DoA of an interferer, many scan angles and complex energy intensive calculations are needed. In contrast, the proposed DSIC directly converts an incoming wavefront to spatial information and generates only a few compressed sensing (CS) measurements by forming random projections of the spatial signal consecutively in time. The DoA of the wavefront is then rapidly found from these CS measurements. The energy consumption of the DSIC is 16x lower than the CBF for a realistic scenario where the DoA of only one large interferer needs to be found. Compared to other recently proposed CS DoA finders, the DSIC delivers significant reconfigurability and scalability advantages especially when the number of interferers is unknown.
Theory and Design of a Direct Space-to-Information Converter for Rapid Detection of Interferer DoA
2017-09-01
1638819 byte
Conference paper
Electronic Resource
English
Coordinated interference cleaning with known interferer location and timing
European Patent Office | 2023
|Space-based direct detection wind mission design
SPIE | 2007
|