Although traffic is one of the massively collected data, it is often only available for specific regions. One concern is that, although there are studies that give good results for these data, the data from these regions may not be sufficiently representative to describe all the traffic patterns in the rest of the world. In quest of addressing this concern, we propose a speed prediction method that is independent of large historical speed data. To predict a vehicle’s speed, we use the trajectory road topographical features to fit a Shared Weight Multilayer Perceptron learning model. Our results show significant improvement, both qualitative and quantitative, over standard regression analysis. Moreover, the proposed framework sheds new light on the way to design new approaches for traffic analysis.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed Prediction using Road Topographical Features




    Publication date :

    2023-06-14


    Size :

    793165 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English





    Modular, Multilayer Perceptron

    Cheng, Li-Jen / Liu, Tsuen-Hsi | NTRS | 1991


    Long-Term Prediction of Lane Change Maneuver Through a Multilayer Perceptron

    Shou, Zhenyu / Wang, Ziran / Han, Kyungtae et al. | IEEE | 2020


    LONG-TERM PREDICTION OF LANE CHANGE MANEUVER THROUGH A MULTILAYER PERCEPTRON

    Shou, Zhenyu / Wang, Ziran / Han, Kyungtae et al. | British Library Conference Proceedings | 2020