Energy harvesting technologies are constantly evolving to help power sensor network nodes. Ranging from miniature power solar panels to micro wind turbines, nodes still express a deep need to harvest energies in order to keep both good performance level and energy autonomy. Recently, the simultaneous use of multiple sources has been proposed to tackle the time-varying characteristics of certain sources that can induce energy scarcity period and thus alter the node performance. In this context, this paper presents a methodology aimed at classifying the energy sources to choose the most efficient energy manager. As sensor nodes are embedded devices, it is necessary to ensure a balance between computational effort and classification accuracy. Feature extraction and selection phases can be processed and analyzed offline before deployment, and only a subset of features will be needed by the nodes to achieve efficient energy management. Simulations on real energy traces show that the proposed approach achieves classification accuracy higher than 95% through the computation of 4 features only.
Feature Selection Framework for Multi-Source Energy Harvesting Wireless Sensor Networks
2018-06-01
1273395 byte
Conference paper
Electronic Resource
English
Comparison of energy harvesting systems for wireless sensor networks
British Library Online Contents | 2008
|