Intra-driver and inter-driver heterogeneity has been confirmed to exist in human driving behaviors by many studies. This research proposes a driver identification method by modeling such heterogeneities in car following sequences. It is assumed that all drivers share a pool of driver states; under each state, a car-following data sequence obeys a specific probability distribution in feature space; each driver has his/her own probability distribution over the states, called driver profile, which characterize the intra-driver heterogeneity, while the difference between the driver profile of different drivers depicts the inter-driver heterogeneity. Thus, the driver profile can be used to distinguish a driver from others. Based on the assumption, a method of driver identification is proposed to take both intra- and inter-driver heterogeneity into consideration, and a method is developed to jointly learn parameters in behavioral feature extractor, driver states, and driver profiles. Experiments demonstrate the performance of the proposed method in driver identification on naturalistic car-following data: accuracy of 82.3% is achieved in an 8-driver experiment using 10 car-following sequences of duration 15 seconds for online inference. The potential of fast registration of new drivers is demonstrated and discussed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Driver Identification Through Heterogeneity Modeling in Car-Following Sequences


    Contributors:

    Published in:

    Publication date :

    2022-10-01


    Size :

    3434069 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Driver Identification through Multi-state Car Following Modeling

    Ding, Zhezhang / Xu, Donghao / Zhao, Huijing et al. | IEEE | 2019


    Driver Identification through Stochastic Multi-State Car-Following Modeling

    Xu, Donghao / Ding, Zhezhang / Tu, Chenfeng et al. | ArXiv | 2020

    Free access

    Driver Heterogeneity in Car following and Its Impact on Modeling Traffic Dynamics

    Ossen, Saskia / Hoogendoorn, Serge P. | Transportation Research Record | 2007



    METHOD FOR DRIVER IDENTIFICATION BASED ON CAR FOLLOWING MODELING

    MOZE MATHIEU / AIOUN FRANCOIS / GUILLEMARD FRANCK et al. | European Patent Office | 2020

    Free access