Abhstract- Continual learning for Semantic Segmentation (CSS) is a rapidly emerging field, in which the capabilities of the segmentation model are incrementally improved by learning new classes or new domains. A central challenge in Continual Learning is overcoming the effects of catastrophic forgetting, which refers to the sudden drop in accuracy on previously learned tasks after the model is trained on new classes or domains. In continual classification this challenge is often overcome by replaying a small selection of samples from previous tasks, however replay is rarely considered in CSS. Therefore, we investigate the influences of various replay strategies for semantic segmentation and evaluate them in class- and domain-incremental settings. Our findings suggest that in a class-incremental setting, it is critical to achieve a uniform distribution for the different classes in the buffer to avoid a bias towards newly learned classes. In the domainincremental setting, it is most effective to select buffer samples by uniformly sampling from the distribution of learned feature representations or by choosing samples with median entropy. Finally, we observe that the effective sampling methods help to decrease the representation shift significantly in early layers, which is a major cause of forgetting in domain-incremental learning.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Improving Replay-Based Continual Semantic Segmentation with Smart Data Selection


    Contributors:


    Publication date :

    2022-10-08


    Size :

    9432764 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Effects of Architectures on Continual Semantic Segmentation

    Kalb, Tobias / Ahuja, Niket / Zhou, Jingxing et al. | IEEE | 2023


    Continual BatchNorm Adaptation (CBNA) for Semantic Segmentation

    Klingner, Marvin / Ayache, Mouadh / Fingscheidt, Tim | IEEE | 2022

    Free access

    Continual Learning for Class- and Domain-Incremental Semantic Segmentation

    Kalb, Tobias / Roschani, Masoud / Ruf, Miriam et al. | IEEE | 2021



    Continual Unsupervised Domain Adaptation for Semantic Segmentation by Online Frequency Domain Style Transfer

    Termohlen, Jan-Aike / Klingner, Marvin / Brettin, Leon J. et al. | IEEE | 2021