Grassland fires are characterized by their suddenness and difficulty in timely detection, which often bring great harm. Effective detection of grassland fire by UAV (unmanned aerial vehicle) is a new direction for future development. To address the problem of detecting and locating grassland fires by UAVs, we optimize the YOLOv8s model, improve its ability to identify grassland smoke and fire spots, guide UAVs to track possible targets, and improve the positioning accuracy of grassland fires by combining RTK (Real-Time Kinematic) information. After several field simulation tests and validation set tests, the results show that the optimized YOLOv8s model has high recognition ability for grassland smoke and fire spots, and the probability of the UAV to achieve high-precision fire spot localization can reach 90.82%.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Grassland Fire Detection and Localization of UAV Based on Optimized YOLOv8s


    Contributors:
    Ma, Junlin (author) / Wang, Fangping (author) / Liu, Bin (author) / Lyu, Yang (author) / Tang, Min (author) / Ji, Zheng (author)


    Publication date :

    2025-05-16


    Size :

    6024719 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Vehicle detection research based on improved YOLOv8s

    Yu, Qing / Song, Anjun | SPIE | 2025


    Track Fastener Detection Method Based on Improved Yolov8s Algorithm

    Zhu, Jianpeng / Zhang, Haigang / Wu, Lei et al. | IEEE | 2024


    Deep Learning Network Model for Road Pavement Damage Detection Based on YOLOv8s-GES

    Wang, Niannian / Gao, Ziqiao / Fang, Hongyuan et al. | Transportation Research Record | 2025



    Crawler-type grassland biomass detection robot

    TAN YUCHEN / CUI JIFENG / ZHANG SHUAI et al. | European Patent Office | 2023

    Free access