Advanced Driving Assistance Systems (ADAS) for improving vehicular safety are increasingly network based, with approaches that use vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. Most current proposals for V2V and V2I use DSRC and a dedicated infrastructure of road side units (RSUs) for the V2I scenarios. Here, the technical feasibility of an alternative architecture is explored, one that uses a combination of LTE cellular networks and servers near the edge of the LTE network. Compared with approaches based on DSRC and RSUs, this architecture exploits an infrastructure that is already largely deployed, but requires that technical challenges related to latency and scalability be addressed. This paper outlines an architecture that addresses these challenges and shows experimental results that demonstrate its effectiveness for vehicular safety applications. The approach combines resources near the network edge with broadcast-based data distribution to provide data freshness guarantees comparable to what can be achieved with DSRC for many applications. Experiments from the deployed LTE network and NS-3 simulations demonstrate that this approach is feasible, and show the benefits and limitations of the architecture.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Enabling vehicular safety applications over LTE networks


    Contributors:


    Publication date :

    2013-12-01


    Size :

    188120 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Vehicular Networks : Principles, Enabling Technologies and Modern Applications

    GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2024

    Free access


    GeoNet: A project enabling active safety and IPv6 vehicular applications

    Mariyasagayam, Marie Nestor / Menouar, Hamid / Len, Massimiliano | IEEE | 2008


    Broadcast algorithms for active safety applications over vehicular ad-hoc networks

    Mariyasagayam, M.N. / Lenardi, M. | Tema Archive | 2001


    FOR ENABLING COLLECTIVE PERCEPTION IN VEHICULAR NETWORKS

    JHA SATISH C / SIVANESAN KATHIRAVETPILLAI / GOMES BALTAR LEONARDO et al. | European Patent Office | 2024

    Free access