When freeway traffic is dense, shock waves may appear. These shock waves result in longer travel times and in sudden large variations in the speeds of the vehicles, which could lead to unsafe situations. Dynamic speed limits can be used to eliminate or at least to reduce the effects of shock waves. However, coordination of the variable speed limits is necessary in order to prevent the occurrence of new shock waves and/or a negative impact on the traffic flows in other locations. In this paper, we present a model predictive control approach to optimally coordinate variable speed limits for freeway traffic with the aim of suppressing shock waves. First, we optimize continuous valued speed limits, such that the total travel time is minimal. Next, we include a safety constraint that prevents drivers from encountering speed limit drops larger than, e.g., 10 km/h. Furthermore, to get a better correspondence between the computed and applied control signals, we also consider discrete speed limits. We illustrate our approach with a benchmark problem.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Optimal coordination of variable speed limits to suppress shock waves


    Contributors:


    Publication date :

    2005-03-01


    Size :

    988661 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Optimal Coordination of Variable Speed Limits to Suppress Shock Waves

    Hegyi, A. / De Schutter, B. / Hellendoorn, J. | Transportation Research Record | 2003




    Shock wave elimination/reduction by optimal coordination of variable speed limits

    Breton, P. / Hegyi, A. / De Schutter, B. et al. | IEEE | 2002


    SHOCK WAVE ELIMINATION/REDUCTION BY OPTIMAL COORDINATION OF VARIABLE SPEED LIMITS

    Breton, P. / Hegyi, A. / De Schutter, B. et al. | British Library Conference Proceedings | 2002