In a complex electromagnetic environment, multiple radar signals of various modes are densely interleaved. In this environment, radar parameters overlap seriously and change continuously over time. Traditional radar pulse deinterleaving algorithms face severe challenges, such as parameters missing, pulse jitter, and the increasing number of electronic countermeasure devices. In this article, we propose a recursive deinterleaving algorithm based on blind signal separation and deep learning to cope with such a situation. The recursive deinterleaving network (RDN) of deep ToA mask (DTM) maps the ToA train to a suitable feature space first. ToA coefficient masks of each radar emitter are estimated with the local and global context information of the radar pulse feature. Then, the RDN sorts out several radar pulse trains recursively with the help of dual-path attention. It also predicts the number of emitters with nearly 100% accuracy and handles the unknown pulse repetition interval (PRI) situation. More accurate pulse deinterleaving results can be obtained if the DTM utilizes more radar parameters through proper preprocessing fine-tuning and postprocessing reclustering. The processing steps of the DTM are introduced in detail. The simulation shows that it can achieve 97% sorting accuracy for multipulse interleaved radar train with jitter PRI and pulse missing. The DTM algorithm can also deal with the interleaved radar signals of different PRI modulations by reclustering with noisy PDW information. On the premise of knowing the modulation type or PRI information, the pulse train deinterleaving accuracy of multimodulation emitters is higher.
Deep ToA Mask-Based Recursive Radar Pulse Deinterleaving
IEEE Transactions on Aerospace and Electronic Systems ; 59 , 2 ; 989-1006
2023-04-01
3027500 byte
Article (Journal)
Electronic Resource
English
Incremental Deinterleaving of Radar Emitters
IEEE | 2023
|Pulse Deinterleaving for Multifunction Radars With Hierarchical Deep Neural Networks
IEEE | 2021
|Time-period Analysis for Pulse Train Deinterleaving
British Library Online Contents | 2004
|