Vehicular ad hoc networks (VANETs) is one of the most promising approaches for the Intelligent Transportation Systems (ITS). With the rapid increase in the amount of traffic data, deep learning based algorithms have been used extensively in VANETs. The recently proposed federated learning is an attractive candidate for collaborative machine learning where instead of transferring a plethora of data to a centralized server, all clients train their respective local models and upload them to the server for model aggregation. Model quantization is an effective approach to address the communication efficiency issue in federated learning, and yet existing studies largely assume homogeneous quantization for all clients. However, in reality, clients are predominantly heterogeneous, where they support different quantization precision levels. In this work, we propose FedDO – Federated Learning with Double Optimization. Minimizing the drift term in the convergence analysis, which is a weighted sum of squared quantization errors (SQE) over all clients, leads to a double optimization at both clients and server sides. In particular, each client adopts a fully distributed, instantaneous (per learning round) and individualized (per client) quantization scheme that minimizes its own squared quantization error, and the server computes the aggregation weights that minimize the weighted sum of squared quantization errors over all clients. We show via numerical experiments that the minimal-SQE quantizer has a better performance than a widely adopted linear quantizer for federated learning. We also demonstrate the performance advantages of FedDO over the vanilla FedAvg with standard equal weights and linear quantization.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Joint Optimal Quantization and Aggregation of Federated Learning Scheme in VANETs


    Contributors:
    Li, Yifei (author) / Guo, Yijia (author) / Alazab, Mamoun (author) / Chen, Shengbo (author) / Shen, Cong (author) / Yu, Keping (author)

    Published in:

    Publication date :

    2022-10-01


    Size :

    1257665 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Catch-up: A data aggregation scheme for VANETs

    Yu, Bo / Gong, Jiayu / Xu, Cheng-Zhong | Tema Archive | 2008


    A data aggregation scheme for traffic information systems in urban VANETs

    Guedes, Bruno F. / Campos, Carlos A. V. | IEEE | 2016


    Probabilistic aggregation for data dissemination in VANETs

    Lochert, Christian / Scheuermann, Björn / Mauve, Martin | Tema Archive | 2007


    A trust propagation scheme in VANETs

    Jian Wang, / Yanheng Liu, / Xiaomin Liu, et al. | IEEE | 2009


    A Trust Propagation Scheme in VANETs

    Wang, J. / Liu, Y. / Liu, X. et al. | British Library Conference Proceedings | 2009