To achieve accurate recognition of surrounding vehicles' driving intentions for autonomous driving vehicles, this paper proposes a driving intent recognition model based on future trajectory feature extraction and Extreme Gradient Boosting algorithm (XGBoost), termed as Bi-LSTM-XGBoost. Firstly, using real road datasets from NGSIM (Next Generation SIMulation) US101 and I–80 segments, the driving intentions of vehicle historical trajectories are annotated. Then, the future trajectories of target vehicles are predicted using the Bi-directional Long Short-Term Memory (Bi-LSTM) module, and during the training process, a certain proportion of labeled data is used as model input for feature extraction to prevent the influence of incorrect outputs on subsequent results. Secondly, a driving intent recognition framework is constructed by unwinding multidimensional features obtained in the previous step to one dimension, and XGBoost module is utilized to integrate historical and future trajectory outputs for driving intent recognition. Finally, experimental results demonstrate that this method achieves an accuracy of 97.4% in recognizing driving intentions at the prediction horizon of 3 seconds for a historical trajectory of 5 seconds, indicating its strong capability in driving intent recognition.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Driving Intention Recognition Based on Bi-LSTM Network and XGBoost


    Contributors:
    Li, Haiqing (author) / Dai, Yingying (author) / Lei, Yucheng (author) / Chen, Yang (author)


    Publication date :

    2025-05-09


    Size :

    884086 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Vehicle lane changing intention recognition method based on TCN-LSTM network

    XIANG QIAOJUN / ZHOU WEI / YUAN RENTENG et al. | European Patent Office | 2024

    Free access

    Driving intention reasoning method for LSTM network optimization based on complete transfer learning

    LIAN YUFENG / LI BINGLIN / LI YAN et al. | European Patent Office | 2023

    Free access

    Driving intention recognition

    GLÄSER STEFAN / ENGEL MONIQUE | European Patent Office | 2024

    Free access

    Driving Intention Recognition

    GLÄSER STEFAN / ENGEL MONIQUE | European Patent Office | 2022

    Free access

    Truck Parking Occupancy Prediction: XGBoost-LSTM Model Fusion

    Sebastian Gutmann / Christoph Maget / Matthias Spangler et al. | DOAJ | 2021

    Free access