This paper reviews the current status and implementation of battery chargers, charging power levels and infrastructure for plug-in electric vehicles and hybrids. Battery performance depends both on types and design of the batteries, and on charger characteristics and charging infrastructure. Charger systems are categorized into off-board and on-board types with unidirectional or bidirectional power flow. Unidirectional charging limits hardware requirements and simplifies interconnection issues. Bidirectional charging supports battery energy injection back to the grid. Typical onboard chargers restrict the power because of weight, space and cost constraints. They can be integrated with the electric drive for avoiding these problems. The availability of a charging infrastructure reduces on-board energy storage requirements and costs. On-board charger systems can be conductive or inductive. While conductive chargers use direct contact, inductive chargers transfer power magnetically. An off-board charger can be designed for high charging rates and is less constrained by size and weight. Level 1 (convenience), Level 2 (primary), and Level 3 (fast) power levels are discussed. These system configurations vary from country to country depending on the source and plug capacity standards. Various power level chargers and infrastructure configurations are presented, compared, and evaluated based on amount of power, charging time and location, cost, equipment, effect on the grid, and other factors.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles


    Contributors:


    Publication date :

    2012-03-01


    Size :

    1050658 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    K. Morrow / D. Karner / J. Francfort | NTIS | 2008


    ISO 15118 - charging communication between plug in electric vehicles and charging infrastructure

    Heinrich,A. / Schwaiger,M. / Daimler,Stuttgart,DE et al. | Automotive engineering | 2016


    ISO 15118 – charging communication between plug-in electric vehicles and charging infrastructure

    Dr. Heinrich, Andreas / Schwaiger, Michael | Springer Verlag | 2016


    Planning charging infrastructure for plug-in electric vehicles in city centers

    Ghamami, Mehrnaz / Nie, Yu (Marco) / Zockaie, Ali | Taylor & Francis Verlag | 2016