Existing solutions for road surface monitoring have assumed that events (both normal and abnormal) have a defined duration, and these methods fail to provide a universal framework that can be used to assess the quality of roads in real-world scenarios where events do not have to be of fixed duration. This article aims to improve road quality assessment systems by overcoming the constraint of fixed window size and taking into account the real-world scenario of variable-length events. First, we annotate a big heterogeneous data set without partitioning it into fixed-size windows. Second, we suggest two distinct approaches for detecting and characterizing anomalies utilizing deep learning architectures comprising Bi-Directional LSTM units. The first strategy is sequence classification (using a many to one correspondence to classify the entire sequence), and the second approach is endpoint detection (classify each time step as a normal or anomalous event using a many to many approach). The solutions presented in this article are intended for use with non-anomalous (normal) signals as well as with four distinct types of anomalies: cat-eyes, manholes, potholes, and speed bumps. Our sequence classification model (Bi-LSTM model) is capable of detecting anomalies with a 97.3% True Positive Rate when the anomalies are considered a positive class. On the other hand, our end-point detection framework is able to mark the exact end-point of anomalous signals with a true positive rate of 90.2% as shown in II. Our dataset and annotation are publicly available at: https://drive.google.com/drive/folders/ 1Qf-4D6P9Oeu-yw3yc3UY55V7wDCWiumI


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Fine-Grained Road Quality Monitoring Using Deep Learning


    Contributors:

    Published in:

    Publication date :

    2023-10-01


    Size :

    13526979 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Fine-Grained Vehicle Classification in Urban Traffic Scenes using Deep Learning

    Najeeb, Syeda Aneeba / Raza, Rana Hammad / Yusuf, Adeel et al. | ArXiv | 2021

    Free access

    Fine-Grained Vehicle Classification in Urban Traffic Scenes Using Deep Learning

    Najeeb, Syeda Aneeba / Raza, Rana Hammad / Yusuf, Adeel et al. | British Library Conference Proceedings | 2022


    Fine-Grained Vehicle Classification in Urban Traffic Scenes Using Deep Learning

    Najeeb, Syeda Aneeba / Raza, Rana Hammad / Yusuf, Adeel et al. | Springer Verlag | 2022


    Deep learning‐based real‐time fine‐grained pedestrian recognition using stream processing

    Zhang, Weishan / Wang, Zhichao / Liu, Xin et al. | Wiley | 2018

    Free access

    Deep learning-based real-time fine-grained pedestrian recognition using stream processing

    Zhang, Weishan / Wang, Zhichao / Liu, Xin et al. | IET | 2018

    Free access