The text skew estimation algorithm utilizes recursive morphological transforms. With hand tuned parameters the algorithm produces estimated text skew angles which are within 0.1/spl deg/ of the true text skew angles 99% of the time. We also developed methodology to allow the algorithm to determine the optimal algorithm parameter settings on the fly without any human interaction. Under this automatic mode, our experimental results indicate that the algorithm generates estimated text skew angles which are within 0.5/spl deg/ of the true text skew angles 99% of the time. To process a 3300/spl times/2550 document image, the algorithm takes about 10 seconds on SUN Sparc 10 machines if discounting the document image file reading time.<>


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An automatic algorithm for text skew estimation in document images using recursive morphological transforms


    Contributors:
    Su Chen (author) / Haralick, R.M. (author)


    Publication date :

    1994-01-01


    Size :

    457171 byte




    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    An Automatic Algorithm for Text Skew Estimation in Document Images using Recursive Morphological Transforms

    Su, C. / Haralick, R. M. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Automatic Text Skew Estimation in Document Images

    Chen, S. / Haralick, R. M. / Phillips, I. T. | British Library Conference Proceedings | 1995


    Automatic text skew estimation in document images

    Su Chen / Haralick, R.M. / Phillips, I.T. | IEEE | 1995


    Automatic line detection in document images using recursive morphological transforms [2422-17]

    Kong, B. / Chen, S. / Haralick, R. M. et al. | British Library Conference Proceedings | 1995


    Efficient skew estimation and correction algorithm for document images

    Kwag, H. K. / Kim, S. H. / Jeong, S. H. et al. | British Library Online Contents | 2002