Traffic speed prediction is among the foundations of advanced traffic management and the gradual deployment of internet of things sensors is empowering data-driven approaches for the prediction. Nonetheless, existing research studies mainly focus on short-term traffic prediction that covers up to one hour forecast into the future. Previous long-term prediction approaches experience error accumulation, exposure bias, or generate future data of low granularity. In this paper, a novel data-driven, long-term, high-granularity traffic speed prediction approach is proposed based on recent development of graph deep learning techniques. The proposed model utilizes a predictor-regularizer architecture to embed the spatial-temporal data correlation of traffic dynamics in the prediction process. Graph convolutions are widely adopted in both sub-networks for geometrical latent information extraction and reconstruction. To assess the performance of the proposed approach, comprehensive case studies are conducted on real-world datasets and consistent improvements can be observed over baselines. This work is among the pioneering efforts on network-wide long-term traffic speed prediction. The design principles of the proposed approach can serve as a reference point for future transportation research leveraging deep learning.
Long-Term Urban Traffic Speed Prediction With Deep Learning on Graphs
IEEE Transactions on Intelligent Transportation Systems ; 23 , 7 ; 7359-7370
2022-07-01
1587764 byte
Article (Journal)
Electronic Resource
English
Traffic speed prediction using deep learning method
IEEE | 2016
|Long-Term Ship Speed Prediction for Intelligent Traffic Signaling
Online Contents | 2017
|Traffic Speed Prediction with Deep Learning Methods - Best results
ORKG Comparisons | 2022
|