This work addresses the coexistence problem for radar networks. Specifically, we model a network of cooperative, independent, and non-communicating radar nodes which must share resources within the network as well as with non-cooperative nearby emitters. We approach this problem using online Machine Learning (ML) techniques. Online learning approaches are specifically preferred due to the sequential nature of the problem. For this task we specifically select the multi-player multi-armed bandit (MMAB) model, where each radar node in a network makes independent selections of center frequency and waveform with the same goal of improving tracking performance for the network as a whole. For accurate tracking, each radar node communicates observations to a fusion center on set intervals. The fusion center has knowledge of the radar node placement, but cannot communicate to the individual nodes fast enough for waveform control. Each independent and identical node must choose one of many waveforms to transmit in each Pulse Repetition Interval (PRI) while avoiding collisions with other nodes and interference from the environment. The goal for the network as a whole is to minimize target tracking error, which relies on obtaining high SINR in each time step. Our contributions include a mathematical description of the MMAB framework adapted to the radar network scenario. We conclude with a simulation study of several different network configurations. Experimental results show that iterative, online learning using MMAB outperforms the more traditional sense-and-avoid (SAA) and fixed-allocation approaches.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Distributed Online Learning for Coexistence in Cognitive Radar Networks


    Contributors:


    Publication date :

    2023-04-01


    Size :

    1646160 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Online Bayesian Meta-Learning for Cognitive Tracking Radar

    Thornton, Charles E. / Buehrer, Richard M. / Martone, Anthony F. | IEEE | 2023


    Spectrum Sharing Radar: Coexistence via Xampling

    Cohen, Deborah / Mishra, Kumar Vijay / Eldar, Yonina C. | IEEE | 2018


    Spectrum Allocation for Noncooperative Radar Coexistence

    Martone, Anthony F. / Ranney, Kenneth I. / Sherbondy, Kelly et al. | IEEE | 2018


    Experimental Evaluation of Radar Waveforms for Spectral Coexistence using the PARSAX radar

    Carotenuto, V. / Aubry, A. / De Maio, A. et al. | IEEE | 2023


    Successive Interference Cancellation for Communication and Radar Coexistence

    Wang, Zhaoqi / Xiong, Liliang / Liu, Xiqing et al. | IEEE | 2022