Terahertz (THz)-band communication (0.1-10 THz) is envisioned as a key wireless technology to satisfy the in- creasing demand for faster data-rates in beyond 5G systems, thanks to its ultra-broad bandwidth. The very high path loss at THz frequencies and the limited transmission power of THz transceivers impose a major distance limitation for THz wireless communications. To increase the communication distance and the achievable data rates at THz-band frequencies, the concept of Ultra-Massive MIMO (UM-MIMO) has been introduced, which integrates a very large number of nano-antennas (e.g., 1024) in very small footprints (e.g., 1 mm^2). In this paper, an end-to-end model for UM-MIMO communication in the THz band is developed, by accounting for the properties of graphene- based plasmonic nano-antenna arrays and the peculiarities of three- dimensional THz propagation. The developed model is utilized to investigate the performance of the UM- MIMO channel. In particular, the path gain, the array factor and the the wideband capacity for both spatial multiplexing and beamforming regimes are analyzed. The results show that multi-Terabit-per-second links are feasible at distances of up to 20 m when utilizing 1024 × 1024 UM-MIMO systems at 0.3 THz and 1 THz.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Ultra-Massive MIMO Channel Modeling for Graphene-Enabled Terahertz-Band Communications


    Contributors:


    Publication date :

    2018-06-01


    Size :

    403759 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Distance-Aware Subarray Selection for Terahertz Ultra-Massive MIMO Systems

    Liu, Yiying / Wu, Jiao / Kim, Seungnyun et al. | IEEE | 2023


    Millimeter-Wave Massive MIMO Vehicular Channel Modeling

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022




    mmWave massive MIMO vehicular communications

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | TIBKAT | 2023