In this paper, battery lifetime estimation of an electric vehicle (EV) using different driving styles on arterial roads integrating recharging scenarios in the neighborhood of the vehicle-to-grid integration is studied. The real-world driving cycles from a fleet of connected vehicles are evaluated in an EV model with different charging options. Daily utility services are added to the simulations to explore the whole day performance of the battery and its daily degradation. Fifty driving cycles from different drivers on arterial roads are classified into aggressive, mild, and gentle drivers based on their driving acceleration behavior. The standard levels 1 and 2 chargers are considered for recharging and the frequency regulation, and peak shaving and solar energy storage are assumed for the daily ancillary services. The results indicate that the aggressive driving and recharging behavior have significant effect on the battery life reduction. In addition, the daily utility services impose extra degradation of the battery. Also, the effect of temperature change on the battery degradation is explored. Simulation of active versus passive thermal management systems in three different climates shows the significant impact of the battery temperature on its capacity fade.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Electric Vehicle Battery Cycle Aging Evaluation in Real-World Daily Driving and Vehicle-to-Grid Services


    Contributors:


    Publication date :

    2018-03-01


    Size :

    4727566 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Development of Real World Driving Cycle for Vehicle Durability Evaluation

    Singanamalli, Anil / Risam, Gagandeep Singh / T, Rajasekaran et al. | SAE Technical Papers | 2012


    Development of Real World Driving Cycle for Vehicle Durability Evaluation

    Risam, G.S. / Singanamalli, A. / Sasun, C. et al. | British Library Conference Proceedings | 2012


    Methodology to Develop a Real World Driving Cycle for Electric Vehicle Simulation Studies

    K, Sibi Krishnan / J, Jithin T / Pathiyil, Prasanth et al. | IEEE | 2021


    Electric vehicle driving range estimation method based on battery aging level

    WANG YONGXING / BI JUN / ZUO XIAOLONG | European Patent Office | 2023

    Free access