With the development of the sixth-generation network, Digital Twin (DT) is driving the explosive growth of Internet-of-Vehicles (IoVs). The rapid proliferation of highly mobile IoVs, coupled with advanced applications, resulted in rigorous demands for quality of experience (QoE) and intricate task caching. The diverse requirements of on-vehicle applications, as well as the freshness of dynamic cached information, provide significant challenges for edge servers in efficiently fulfilling energy and latency demands. This work studies a freshness-aware caching-aided offloading-based task allocation problem (FCAOP) in DT-enabled IoV (DTIoV) with Intelligent Reflective Surfaces (IRS) and edge computing. DT is used to accumulate real-time data and digitally depict the physical objects of the IoV to enhance decision-making. A quantum-inspired differential evolution (QDE) algorithm is proposed to reduce the overall delay and energy consumption in DTIoV (QDE-DTIoV). The quantum vector (QV) is encoded to represent a complete solution to the FCAOP. The decoding of the QVs is done using a one-time hashing algorithm. The fitness function is derived by considering delay, energy consumption, and freshness of the tasks. Extensive simulations demonstrate the superiority of QDE-DTIoV over other benchmark algorithms, showing an average latency improvement of 23%–26% and a reduction in energy consumption ranging from 22% to 33%.
Quantum-Inspired Differential Evolution for Freshness-Aware Caching-Aided Offloading in Digital Twin-Enabled Internet of Vehicles
IEEE Transactions on Intelligent Vehicles ; 9 , 12 ; 7646-7659
2024-12-01
2601029 byte
Article (Journal)
Electronic Resource
English