As bird’s-eye-view (BEV) semantic segmentation is simple-to-visualize and easy-to-handle, it has been applied in autonomous driving to provide the surrounding information to downstream tasks. Inferring BEV semantic segmentation conditioned on multi-camera-view images is a popular scheme in the community as cheap devices and real-time processing. The recent work implemented this task by learning the content and position relationship via Vision Transformer (ViT). However, its quadratic complexity confines the relationship learning only in the latent layer, leaving the scale gap to impede the representation of fine-grained objects. In view of information absorption, when representing position-related BEV features, their weighted fusion of all view feature imposes inconducive features to disturb the fusion of conducive features. To tackle these issues, we propose a novel cross-scale hierarchical Transformer with correspondence-augmented attention for semantic segmentation inference. Specifically, we devise a hierarchical framework to refine the BEV feature representation, where the last size is only half of the final segmentation. To save the computation increase caused by this hierarchical framework, we exploit the cross-scale Transformer to learn feature relationships in a reversed-aligning way, and leverage the residual connection of BEV features to facilitate information transmission between scales. We propose correspondence-augmented attention to distinguish conducive and inconducive correspondences. It is implemented in a simple yet effective way, amplifying attention scores before the Softmax operation, so that the position-view-related and the position-view-disrelated attention scores are highlighted and suppressed. Extensive experiments demonstrate that our method has state-of-the-art performance in inferring BEV semantic segmentation conditioned on multi-camera-view images.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Cross-Scale Hierarchical Transformer With Correspondence-Augmented Attention for Inferring Bird’s-Eye-View Semantic Segmentation


    Contributors:
    Fang, Naiyu (author) / Qiu, Lemiao (author) / Zhang, Shuyou (author) / Wang, Zili (author) / Hu, Kerui (author) / Wang, Kang (author)


    Publication date :

    2024-07-01


    Size :

    2999800 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Dynamically augmented bird's-eye view

    ANDERSON NOEL W | European Patent Office | 2021

    Free access

    DYNAMICALLY AUGMENTED BIRD'S-EYE VIEW

    ANDERSON NOEL W | European Patent Office | 2020

    Free access

    Semantic Bird's-Eye View Road Line Mapping

    Bellusci, Matteo / Cudrano, Paolo / Mentasti, Simone et al. | IEEE | 2023



    BIRD'S EYE VIEW

    Online Contents | 1999