Connected and autonomous vehicles run their control algorithms in dedicated on-board computing platforms, which will become obsolete long before the end of the life cycle of the vehicles, severely limiting the evolution of their control software and the deployment of cooperative vehicular applications. A promising solution for this problem is to delegate the most demanding computational tasks to the edge nodes the of Vehicular Ad-hoc Networks, leveraging on the Vehicular Edge Computing paradigm. This requires both low-latency, high-bandwidth communications and secure computing offloading. In this paper, we propose an architecture that ensures supporting secure computation offloading, using the IOTA-VPKI security scheme, without additional delay overhead. Furthermore, to demonstrate the applicability of the proposed scheme to a real case, we measured the time required for the execution of a maneuver plan supervised by an application, the Maneuver Control (MC), located on an edge node. Experimental results show that the described scheme is a very promising solution.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Securing vehicular computation offloading: A distributed ledger-based approach




    Publication date :

    2021-09-01


    Size :

    798532 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English




    Blockchain-Based Secure Computation Offloading in Vehicular Networks

    Zheng, Xiao / Li, Mingchu / Chen, Yuanfang et al. | IEEE | 2021


    MCVCO: Multi-MEC Cooperative Vehicular Computation Offloading

    Liu, Jianhang / Xue, Kunlei / Miao, Qinghai et al. | IEEE | 2024


    Multi-Task Computation Offloading based on Vehicular Blockchain

    Meng, Zhen / Liu, Chuyi / Ren, Guanyu et al. | IEEE | 2023