The problem of detecting distributed targets in compound-Gaussian noise with unknown statistics is considered. At the design stage, in order to cope with the a priori uncertainty, we model noise returns as Gaussian vectors with the same structure of the covariance matrix, but possibly different power levels. We also assume that a set of secondary data, free of signal components, is available to estimate the covariance matrix of the disturbance. Since no uniformly most powerful test exists for the problem at hand we devise and assess two detection strategies based on the Rao test, and the Wald test respectively. Remarkably these detectors ensure the constant false alarm rate property with respect to both the structure of the covariance matrix as well as the power levels. Moreover, the performance assessment, conducted also in comparison with the generalized likelihood ratio test based receiver, shows that the Wald test outperforms the others and is very effective in scenarios of practical interest for radar systems.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Distributed target detection in compound-Gaussian noise with Rao and Wald tests


    Contributors:
    Conte, E. (author) / De Maio, A. (author)


    Publication date :

    2003-04-01


    Size :

    1134446 byte




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Rao and Wald Tests for Target Detection in Coherent Interference

    Sun, Mengru / Liu, Weijian / Liu, Jun et al. | IEEE | 2022



    Target detection in non-gaussian clutter noise

    Davis, J.C. / Helferty, J.P. / Lisowski, J.J. | IEEE | 2003