A new solid state detector, known as Medipix, developed by a consortium of academic institutions has been evolved from a technology originally created for use at the LHC at CERN in Geneva, Switzerland. This technology is being harnessed for use as an active personal dosimeter for space radiation applications. The pixel based technology embeds the entire required readout electronics for each pixel withing the pixel's 55 micron square footprint. That allows the seamless tiling of multiple arrays of detectors. Prototypes have been exposed to heavy ion beams at the HIMAC facility in Japan and at the Texas A&M cyclotron in the US. The results are very encouraging. Extensive experience is being gained in using the detectors with appropriate converters for simultaneous neutron dosimetry as well. Ultimate versions may be deployed that are both wireless and self-contained, as well as having a package size comparable to current passive personal dosimeters. Prospect are excellent for building them into spacesuits, which would provide ground-based real-time monitoring of the detailed doses being taken by crew members during such high-risk periods as EVAs. These dosimeters could also be used as active area monitors in a variety of both space and ground-based applications.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Development of a New Active Personal Dosimeter for Use in Space Radiation Environments


    Contributors:


    Publication date :

    2007-03-01


    Size :

    614662 byte





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English