This paper designed a longitudinal control law for a Flying-wing UAV which is a synthesis of Robustness Servomechanism Linear Quadratic Regulator(RSLQR) and L1 adaptive control method. The controlled variable is chosen as C*, a combination of longitudinal acceleration and pitch rate. The baseline controller is based on RSLQR method to satisfy the control requirement of the UAV. The controller is augmented by L1 adaptive output feedback structure to maintain the desired close-loop system characteristics in the presence of the aerodynamic uncertainties and the significant change of the elevator coefficient caused by the transformation of flight state. This paper summarized the theory, the design, simulation testing and the simulation results using a RSLQR-L1 method which validates the performance and the robustness of the designed control system.
The application of L1 adaptation control theory for Flying-wing UAV (IEEE CGNCC)
2016-08-01
360690 byte
Conference paper
Electronic Resource
English