COVID-19 is a global pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2. While swift vaccine development and distribution have arrested the infection spread rate, it is necessary to design public policies that inform human mobility to curb outbreaks from future strains of the virus. While existing non-pharmaceutical approaches employing network science and machine learning offer promising travel policy solutions, they are guided by epidemiological and economic considerations alone and not human itineraries. We introduce an evolutionary algorithm (EA) based mobility scheduler that incorporates the personalized itineraries of individuals to determine the ideal timing of their mobility. We mathematically analyze the computational efficiency versus the optimality trade-off of the mobility scheduler. Through extensive simulations, we demonstrate that the EA-based mobility scheduler can balance the trade-off between (1) optimality and computational cost and (2) fair and preferential human mobility while reducing contagion under lockdown and no-lockdown as well as even and uneven human mobility traffic scenarios. We show that for two human mobility models, the scheduler exhibits lower infection numbers than a baseline trip-planning approach that directs human traffic along the least congested route to minimize contagion. We discuss that the EA scheduler lends itself to intricate mobility schedules of multiple destination choices with varying priorities and socioeconomic and demographic considerations.
Curbing Pandemic Through Evolutionary Algorithm-Based Priority Aware Mobility Scheduling
IEEE Transactions on Intelligent Transportation Systems ; 24 , 4 ; 3759-3768
2023-04-01
2635298 byte
Article (Journal)
Electronic Resource
English
SLUB | 1994
SLUB | 1994
British Library Conference Proceedings | 1995
|Engineering Index Backfile | 1931
|