Several color object recognition methods that are based on image retrieval algorithms attempt to discount changes of illumination in order to increase performance when test image illumination conditions differ from those that obtained when the image database was created. Here we extend the seminal method of Swain and Ballard to discount changing illumination. The new method is based on the first stage of the simplest color indexing method, which uses angular invariants between color image and edge image channels. That method first normalizes image channels, and then effectively discards much of the remaining information. Here we adopt the color-normalization stage as an adequate color constancy step. Further, we replace 3D color histograms by 2D chromaticity histograms. Treating these as images, we implement the method in a compressed histogram-image domain using a combination of wavelet compression and Discrete Cosine Transform (DCT) to fully exploit the technique of low-pass filtering for efficiency. Results are very encouraging, with substantially better performance than other methods tested. The method is also fast, in that the indexing process is entirely carried out in the compressed domain and uses a feature vector of only 36 or 72 values.
Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images
1998-01-01
1006181 byte
Conference paper
Electronic Resource
English
British Library Conference Proceedings | 1998
|British Library Conference Proceedings | 1998
|British Library Online Contents | 2003
|The illumination-invariant recognition of color texture
IEEE | 1995
|