Inappropriate speed in negotiating curves is the primary cause of rollovers and sideslips. In this study, the authors proposed an improved curve speed model considering driving styles, as well as vehicle and road factors. On the basis of a vehicle–road interaction model, the driver behaviour factor was introduced to quantify driving styles of curve speed choices. Firstly, the fuzzy synthetic evaluation method was utilised to classify the driving styles of 30 professional drivers into three different types (i.e. cautious, moderate and aggressive). Secondly, the classification results using fuzzy synthetic evaluation were compared to and verified with the K-means clustering method resulting over 60% the similarities. Finally, the proposed curve speed model was built and compared with four existing models. The authors’ model has the following promising advantages: (i) it reflects the speed preferences of three different types of drivers on the premise of driving safety on curves; and (ii) it shows a stationary speed transition when the road adhesion coefficient exceeds 0.8, which indicates that rollover, instead of sideslip, becomes the primary cause for lateral instability crashes on curves. Therefore, this proposed curve speed model could be applied in a curve speed warning system to improve both driving safety and comfort.


    Access

    Access via TIB


    Export, share and cite



    Title :

    Curve speed model for driver assistance based on driving style classification


    Contributors:
    Chu, Duanfeng (author) / Deng, Zejian (author) / He, Yi (author) / Wu, Chaozhong (author) / Sun, Chuan (author) / Lu, Zhenji (author)

    Published in:

    Publication date :

    2017-08-10


    Size :

    10 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Curve speed model for driver assistance based on driving style classification

    Chu, Duanfeng / Deng, Zejian / He, Yi et al. | Wiley | 2017

    Free access

    DRIVER ASSISTANCE TECHNOLOGY ADJUSTMENT BASED ON DRIVING STYLE

    BARRETT JORDAN / LEWANDOWSKI ANDREW DENIS / WESTON KEITH et al. | European Patent Office | 2023

    Free access

    Driver assistance technology adjustment based on driving style

    BARRETT JOHN / LEWANDOWSKI ANDREW DENIS / WESTON KEITH et al. | European Patent Office | 2023

    Free access

    Classification of Assistance System Acceptability and Elderly Drivers Driving Style

    Hashimoto, N. / Kato, S. / Tsugawa, S. et al. | British Library Conference Proceedings | 2009


    DRIVING STYLE BASED PERSONALIZABLE DRIVER ASSISTANCE SYSTEM AND METHOD

    BHATTACHARJEE SUDIPTA / CHERUVU KALYAN / THOTA VENKATAVISHNU et al. | European Patent Office | 2024

    Free access