The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. These regions are known to have poor Earth visibility, but unknown is the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in these areas. This report presents a dilution-of-precision (DoP)-based analysis of the performance of a network of Earth-based assets. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum provider elevation angle, nadir and zenith beam widths, and a total single failure in one of the Earth-based assets. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometrical DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.
Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Earth-Based Assets
2007
168 pages
Report
No indication
English