An inductive loop signature technology was previously developed by a US Department of Transportation (DOT) Small Business Innovation Research (SBIR) program to classify vehicles along a section of the roadway using existing inductive loop detectors installed under the pavement. It was tested and demonstrated in California that the loop signature system could obtain more accurate, reliable and comprehensive traffic performance measures for transportation agencies. Results from the studies in California indicated that inductive loop signature technology was able to re-identify and classify vehicles along a section of roadway and provide reliable performance measures for assessing progress, at the local, State, or national level. This study aimed to take advantage of the outcomes from the loop signature development to validate the performance with ground truth vehicle classification data in the Twin Cities Metropolitan Area (TCMA). Based on the results from individual vehicle class verification, class 2 vehicles had the highest match rate of 90%. Possible causes of classification accuracy for other vehicle classes may include types of loops, sensitivity of inductive loops that generates a shadow loop signal on neighboring lanes, and classification library that was built based on California data. To further understand the causes of loop signature performance and improve the classification accuracy, the author suggests performing additional data verification at a permanent Automatic Traffic Recorder (ATR) site. There is also an opportunity to investigate the classification algorithm and develop an enhanced pattern recognition methodology based on the raw loop signature profile of various types of vehicles in Minnesota.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Investigating Inductive Loop Signature Technology for Statewide Vehicle Classification Counts


    Contributors:
    C. Liao (author)

    Publication date :

    2018


    Size :

    84 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English




    Real-Time Vehicle Classification Using Inductive Loop Signature Data

    Jeng, Shin-Ting (Cindy) / Ritchie, Stephen G. | Transportation Research Record | 2008



    Using Traffic Counts in Rural Statewide Transportation Planning

    Wang, Jiangyan / Wilson, Eugene M. | Transportation Research Record | 1997



    Using Traffic Counts in Rural Statewide Transportation Planning

    Wang, J. / Wilson, E. M. / National Research Council; Transportation Research Board | British Library Conference Proceedings | 1997