ISRU of Mars resources was base lined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. HOWEVER: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not base lined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRU Phase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4LO2 ISRU production system.Evolvable Mars CampaignPre-deployed Mars ascent vehicle (MAV)4 crew membersPropellants: Oxygen MethaneGenerate a system model to roll up mass power of a full ISRU system and enable parametric trade studies. Leverage models from previous studies and technology development programs Anchor with mass power performance from existing hardware. Whenever possible used reference-able (published) numbers for traceability.Modular approach to allow subsystem trades and parametric studies. Propellant mass needs taken from most recently published MAV study:Polsgrove, T. et al. (2015), AIAA2015-4416MAV engines operate at mixture ratios (oxygen: methane) between 3:1 and 3.5:1, whereas the Sabatier reactor produces at a 4:1 ratio. Therefore:Methane production is the driving requirement-Excess Oxygen will be produced.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle


    Contributors:
    J. Kleinhenz (author) / A. Paz (author)

    Publication date :

    2017


    Size :

    23 pages


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English








    AN ISRU PROPELLANT PRODUCTION SYSTEM FOR A FULLY FUELED MARS ASCENT VEHICLE (AIAA 2017-0423)

    Kleinhenz, Julie E. / Paz, Aaron | British Library Conference Proceedings | 2017