Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.
Parasitic Current Collection by PASP Plus Solar Arrays
1995
1 pages
Report
No indication
English
Solar Energy , Space Technology , Applications programs (Computers) , Electric current , Flight tests , Mathematical models , Ohmic dissipation , Photovoltaic conversion , Satellite-borne instruments , Solar arrays , Solar cells , Spaceborne experiments , Spacecraft power supplies , Computational geometry , Computerized simulation , Concentrators , Nasa space programs , Plasma potentials , Radiation effects , Space plasmas , Two dimensional models
Apparent Plasma Current Collection Effects on PASP Plus Solar Array Temperatures
British Library Conference Proceedings | 1996
|Flight Data from the PASP-Plus Experiment
British Library Online Contents | 1995
|Flight Data from the PASP-Plus Experiment
British Library Conference Proceedings | 1995
|