An extension of the Complementary-Analytic-Simulative Technique (CAST) is presented which is applicable to the Shuttle Data Processing Subsystem (DPS). A two step process was used. The first step provides models, both analytic and simulative, for analysis of the Approach-Landing Test (ALT) configuration. The ALT modeling and analysis are presented. Since CAST had already been shown to be multicomputer systems, the emphasis was placed on extending the CAST concept so it is applicable to computer systems including the multiplicity of input and output devices found in a real-time control system application. The DPS mission-critical survivability for a six-hour mission was determined to be 0.999863 for the Shuttle ALT baseline configuration. Thus it can be said that for ALT, the survivability is adequate. However, the fact that orbiting missions of up to 30 days are planned illustrates the necessity of extending the ALT work to be applicable to OFT and actual mission scenarios. The above analysis led to the evaluation of three selected options which identified two areas of possible improvement. These improvements would result from use of a recovery technique which combines roll ahead with memory copy, and increased TACAN fault detectability.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Analysis of the survivability of the shuttle (ALT) fault-tolerant avionics system


    Publication date :

    1976-04-01


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English