Commuter aircraft with low wing loading that operate at low altitudes are particularly susceptible to unwanted accelerations caused by atmospheric gusts. This paper describes the design and analysis of a longitudinal digital Ride Quality Augmentation System (RQAS). The RQAS designs were conducted for a Cessna 402B aircraft using the flaps and the elevator as the control surfaces. The designs are generated using linear quadratic Gaussian theory and analyzed in both the time and frequency domains. Nominal designs are presented at five flight conditions that cover a total mission. Trade-off studies are conducted to investigate the effect of sample time, computational delay time, servo bandwidth and control power.
Design of a digital ride quality augmentation system for a commuter aircraft
1984-01-01
Conference paper
No indication
English