The use of a tethered subsatellite employed downward into the earth's upper atmosphere to an altitude of about 110 km above the earth would eliminate the orbital contamination problem while at the same time affording a measure of atmospheric braking to reduce the velocities of many particles to where they may be captured intact or nearly so with properly designed collectors. The same technique could also be used to monitor the flux of all types of man-made orbital debris out to a distance of more than a hundred kilometers in any direction from the space station. In this way the build up of any debris belt orbiting earth could be determined. The actual collecting elements used for both purposes could be of several different materials and designs so as to optimize the collection of different types of particles with different densities. Stacks of foils, films, plastics, and foams, as well as simple capture cells would be mounted in clusters around the outside of a tethered satellite and protected by iris covers until the tethered had been fully deployed. If the orientation history of the satellite were known the direction of the incoming material could be infered. A chief advantage in deploying such tethered collectors from the Space Station instead of from the shuttle is the ability to maintain deployment of the tether for days instead of hours resulting in much greater yields of intact particles and impact debris.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    The use of tethered satellites for the collection of cosmic dust and the sampling of man made orbital debris far from the space station


    Contributors:


    Publication date :

    1986-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English