The nonlinear flutter behavior of a two-dimensional panel in hypersonic flow is investigated analytically. An FEM formulation based unsteady third-order piston theory (Ashley and Zartarian, 1956; McIntosh, 1970) and taking nonlinear structural and aerodynamic phenomena into account is derived; the solution procedure is outlined; and typical results are presented in extensive tables and graphs. A 12-element finite-element solution obtained using an alternative method for linearizing the assumed limit-cycle time function is shown to give predictions in good agreement with classical analytical results for large-amplitude vibration in a vacuum and large-amplitude panel flutter, using linear aerodynamics.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds


    Contributors:
    Mei, Chuh (author) / Gray, Carl E. (author)

    Conference:

    AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference ; 1989 ; Mobile, AL, United States


    Publication date :

    1989-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English