The time-dependent behavior of a wing boundary layer immersed in a propeller slipstream has been studied experimentally in wind-tunnel tests and in flight. Hot-wire anemometer measurements were made through the boundary layer for time-dependent, ensemble-average velocity and turbulence-intensity profiles at various chord locations. The boundary layer has a coherent, time-dependent cycle of transitional behavior, varying from a laminar to a turbulent-transitional state. Local drag coefficients determined from the velocity profiles for the freewheeling propeller case in flight show that the time-dependent drag in the propeller slipstream varies from the undisturbed laminar value to a value less than that predicted for fully turbulent flow. Local drag coefficients determined from the thrusting propeller case in the wind tunnel indicate that the effects of the slipstream are to enhance the stability of the boundary layer and to reduce the drag coefficient in the laminar portion of the cycle below its undisturbed laminar value.
Time-dependent boundary-layer response in a propeller slipstream
Journal of Aircraft ; 26
1989-09-01
Miscellaneous
No indication
English
Propeller Slipstream Development
British Library Conference Proceedings | 2007
|Propeller Slipstream Development
AIAA | 2007
|