Consideration is given to the problem of deriving a time-optimal open-loop control for the half-loop maneuver of a high-alpha aircraft, with initial conditions Mach 0.6 and 15,000 feet. Pontriagin's maximum principle is used to derive candidate optimal solutions. Using the two-point boundary-value algorithm, the flight path angle is maximized for various increasing specified final times until a final time of 13.6 sec yields a 180-deg flight-path angle. As the final time increased from 0.0 to 13.6 sec, the optimization process revealed 13 distinct switching structures of the control law, of which 11 contained singular arcs, and two had double singular arcs.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Singular trajectories for time-optimal half-loop maneuvers of a high alpha fighter aircraft


    Contributors:

    Conference:

    AIAA Guidance, Navigation and Control Conference ; 1989 ; Boston, MA, United States


    Publication date :

    1989-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English