In this investigation, entry corridor analyses are performed to identify the aerodynamic requirements of a manned Mars aerobraking transfer vehicle. The major emphasis is on identifying the required aerobrake hypersonic L/D to insure a successful aerocapture. Aerobraking entry requirements are also imposed on a set of interplanetary mission opportunities to demonstrate their effect on mission flexibility. Based on the requirements of a 1 deg corridor width, deceleration into a parking orbit witn an apoapsis altitude of 32,972 km, and a 5-g deceleration limit, a manned Mars aerobrake characterized by an L/D of at least 1.5 is required for entry velocities as high as 10.0 km/sec. Limiting the Mars entry velocity to values below 8.5 km/sec is shown to induce a minor restriction on mission flexibility while alleviating aerothermodynamic and vehicle packaging concerns; hence, Mars entry velocities in the range of 6.0-8.5 km/sec are suggested, and a manned Mars aerobrake characterized by an L/D between 0.3 and 0.5 is recommended.
Aerodynamic requirements of a manned Mars aerobraking transfer vehicle
AIAA Atmospheric Flight Mechanics Conference ; 1990 ; Portland, OR, United States
1990-01-01
Conference paper
No indication
English
Aerobraking systems for manned Mars missions
NTRS | 1992
|Earth aerobraking strategies for manned return from Mars
AIAA | 1991
|