In this paper the design of an active control law for the rejection of persistent disturbances in large space structures is presented. The control system design approach is based on a deterministic model of the disturbances, with a model-based-compensator (MBC) structure, optimizing the magnitude of the disturbance that the structure can tolerate without violating certain predetermined constraints. In addition to closed-loop stability, the explicit treatment of state, control and control rate constraints, such as structural displacement, control actuator effort, and compensator time guarantees that the final design will exhibit desired performance characteristics. The technique is applied for the vibration damping of a simple two bay truss structure which is subjected to persistent disturbances, such as shuttle docking. Preliminary results indicate that the proposed control system can reject considerable persistent disturbances by utilizing most of the available control, while limiting the structural displacements to within desired tolerances. Further work, however, for incorporating additional design criteria, such as compensator robustness to be traded-off against performance specifications, is warranted.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    A nonlinear optimization approach for disturbance rejection in flexible space structures


    Contributors:

    Conference:

    AIAA Guidance, Navigation and Control Conference ; 1990 ; Portland, OR, United States


    Publication date :

    1990-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English