The development of an approach to the determination of the dynamic characteristics of hypersonic vehicles which is intentionally generic and basic is given. The approach involves a 2D hypersonic aerodynamic analysis utilizing Newtonian theory, coupled with a 1D aero/thermoanalysis of the flow in a scramjet-type propulsion system. In addition, the airframe is considered to be elastic, and the structural dynamics are characterized in terms of a simple lumped-mass model of the invacuo vibration modes. The vibration modes are coupled to the rigid-body modes through the aero/propulsive forces acting on the structure. The control effectors considered on a generic study configuration include aerodynamic pitch-control surfaces, as well as engine fuel flow and diffuser area ratio. The study configuration is shown to be highly statically unstable in pitch, and to exhibit strong airframe/engine/elastic coupling in the aeroelastic and attitude dynamics, as well as the engine responses.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    An integrated analytical aeropropulsive/aeroelastic model for the dynamic analysis of hypersonic vehicles


    Contributors:

    Conference:

    AIAA, Atmospheric Flight Mechanics Conference ; 1992 ; Hilton Head Island, SC, United States


    Publication date :

    1992-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :