The Personnel Launch System (PLS) being studied by NASA is a system to complement the Space Shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return-to-launchsite (RTLS) abort. This paper describes an investigation of the RTLS abort scenario using optimal control theory. The objective of the abort trajectory is to maximize final altitude at a point near the runway. The assumption is then made that there exists a control history to steer the vehicle to any final altitude lower than the final optimal altitude. With this selection of cost function, and with this assumption, the feasibility of an RTLS abort at different times along the ascent trajectory can be determined. The method of differential inclusions, which allows the determination of optimal states and eliminates the need for determining the optimal controls, is used to determine the optimal trajectories.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Optimal return-to-launchsite abort trajectories for an HL-20 Personnel Launch System vehicle


    Contributors:


    Publication date :

    1993-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :