Cyclic thermal expansions and mechanical stiction effects in the Solar Arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted, oscillating disturbance torques on the HST main body, which cause unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: (1) a `total isolation' (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel-out the persistent disturbing torques that are causing the unwanted telescope motions, and (2) an `array damping' (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of Disturbance-Accommodating Control (DAC) Theory a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance-accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing-performance such a controller can achieve.
A dual-mode disturbance-accommodating controller for the Hubble Space Telescope
1993-01-01
Conference paper
No indication
English
Dual-Mode Disturbance-Accommodating Pointing Controller for Hubble Space Telescope
Online Contents | 1995
|Disturbance Accommodating Sliding Mode Controller for Spacecraft Attitude Maneuvers
British Library Conference Proceedings | 1998
|TIBKAT | 1984
|Online Contents | 1995
|