This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Aeroelastic Wingbox Stiffener Topology Optimization


    Contributors:

    Conference:

    AIAA Aviation Technology, Integration, and Operations Conference (AVIATION 2017) ; 2017 ; Denver, CO, United States


    Publication date :

    2017-06-05


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :