In this article, the non-inverting buck-boost converter and its operation modes are scrutinized. The closed-loop stability of the converter in buck and boost modes is analyzed, and the necessity of using an appropriated controller is demonstrated. Then the application of an adapted ant colony optimization to design a feedback controller is proposed, and a controller based on its existing model is tuned. Simulation and experimental results obtained from the ant colony optimization designed controller are then compared with a controller designed with the classic method. Although the simulation and experimental results prove the efficiency of the proposed control approach, a significant difference between controller behavior in practice and simulation is obvious. Finding these differences, more detailed models, including all parasitic elements, in the buck and boost modes are derived. Applying the proposed model in controller design illustrates that the desired performance of the converter can be guaranteed with a simple proportional-integral (PI) controller. The suggested ant colony-based controller is again tuned based on the more detailed model, which improves the performance of the converter system even more. Furthermore, good agreement between analytical and experimental outputs validates the accuracy of the modeling and simulation.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Controller Design Using Ant Colony Algorithm for a Non-inverting Buck-Boost Chopper Based on a Detailed Average Model



    Published in:

    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.33 / 53.33 Elektrische Maschinen und Antriebe