Nonlinear least squares estimations have been widely applied in positioning. However, nonlinear least squares estimations are generally biased. As the Gauss-Newton method has been widely applied to obtain a nonlinear least squares solution, we propose an iterative procedure for obtaining unbiased estimations with this method. The characteristics of the linearization error are discussed and a systematic error source of the linearization error needs to be removed to guarantee the unbiasedness. Both the geometrical condition and the statistical condition for unbiased nonlinear least squares estimations are revealed. It is shown that for long-distance observations of high precision, or for a positioning configuration with the lowest Geometric Dilution Of Precision (GDOP), the nonlinear least squares estimations tend to be unbiased; but for short-distance cases, the bias in the nonlinear least squares solution should be estimated to obtain unbiased values by removing the bias from the nonlinear least squares solution. The proposed results are verified by the Monte Carlo method and this shows that the bias in nonlinear least squares solution of short-distance distances cannot be ignored.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unbiased Nonlinear Least Squares Estimations of Short-distance Equations


    Contributors:

    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.84 Ortungstechnik, Radartechnik / 55.44 Schiffsführung / 53.84 / 42.89 / 55.20 / 55.44 / 55.86 / 55.54 / 55.86 Schiffsverkehr, Schifffahrt / 55.20 Straßenfahrzeugtechnik / 42.89 Zoologie: Sonstiges / 55.54 Flugführung
    Local classification TIB:    275/5680/7035




    Least-Squares Solutions of Nonlinear Differential Equations

    Mortari, Daniele / Johnston, Hunter R. / Smith, Lidia I. | AIAA | 2018


    Least-Squares Solutions of Nonlinear Differential Equations (AIAA 2018-0959)

    Mortari, Daniele / Johnston, Hunter R. / Smith, Lidia I. | British Library Conference Proceedings | 2018


    Hybrid Methods for Nonlinear Least Squares

    Ma, X. / Xu, C. | British Library Online Contents | 1997


    Bancroft's Algorithm is Global Nonlinear Least Squares

    Chaffee, J. / Kovach, K. / Institute of Navigation; Satellite Division | British Library Conference Proceedings