This paper presents a reliable in-motion alignment algorithm for a low cost Strapdown Inertial Navigation System/Global Positioning System (SINS/GPS) combination under random misalignment angles, which transforms attitude alignment into an attitude estimation problem. Based on Rodrigues parameters, an alignment model with a linear state-space equation and a second order nonlinear measurement equation is established. Furthermore, by employing a Taylor expansion on the nonlinear measurement equation, we implement a second order Extended Kalman Filter (EKF2). The proposed method uses a single filter that can not only determine the initial attitude, but also estimate the sensor errors. In addition, a scheme is given for avoiding singularity, which makes the algorithm more widely suitable for random misalignment angles. Experimental ground tests are performed with a low-cost Micro-Electromechanical System (MEMS) SINS, which validates the efficacy of the proposed method. The performance compared to the traditional alignment algorithm is also given.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    In-motion Alignment for Low-cost SINS/GPS under Random Misalignment Angles



    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.84 Ortungstechnik, Radartechnik / 53.84 / 55.54 Flugführung / 42.89 / 55.20 / 55.44 / 55.86 / 55.54 / 55.86 Schiffsverkehr, Schifffahrt / 55.20 Straßenfahrzeugtechnik / 42.89 Zoologie: Sonstiges / 55.44 Schiffsführung
    Local classification TIB:    275/5680/7035