In this paper, a new computational method is provided to identify the uncertain parameters of Load Sensing Proportional Valve (LSPV) in a heavy truck brake system by using the polynomial chaos theory. The simulation model of LSPV is built in the software AMESim depending on structure of the valve, and the estimation process is implemented relying on the experimental measurements by pneumatic bench test. With the polynomial chaos expansion carried out by collocation method, the output observation function of the nonlinear pneumatic model can be transformed into a linear and time-invariant form, and the general recursive functions based on Newton method can therefore be reformulated to fit for the computer programming and calculation. To improve the estimation accuracy, the Newton method is modified with reference to Simulated Annealing algorithm by introducing the Metropolis Principle to control the fluctuation during the estimation process and escape from the local minima. The comparison between the introduced computational method and other estimation method indicates that the proposed method can be performed with higher convergence speed and robustness.
A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve
Sae Int. J. Commer. Veh
SAE 2014 World Congress & Exhibition ; 2014
Sae International Journal of Commercial Vehicles ; 7 , 1 ; 124-131
2014-04-01
8 pages
Conference paper
English
British Library Conference Proceedings | 2014
|British Library Conference Proceedings | 2013
|SAE Technical Papers | 2013
|Load sensing proportional valve body and load sensing proportional valve
European Patent Office | 2015
|Maximum-Likelihood Parameter-Estimation Algorithm
NTRS | 1986
|