This study examines the role of different design constraints applied to the multidisciplinary design optimization of a strut-braced wing (SBW) transonic passenger aircraft. Four different configurations are examined: the reference cantilever wing aircraft, a fuselage mounted engine SBW, a wing mounted engine SBW, and a wingtip mounted engine SBW. The mission profile was for 325-passengers, Mach 0.85 and a 7500 nautical mile range with a 500 nautical mile reserve.The sensitivity of the designs with respect to the individual design constraints was calculated using Lagrange multipliers. A design space visualization technique was also used to gain insight into the role of the different constraints in determining the design configuration. This design visualization technique uses a classic ‘thumbprint’ plot to represent the design space.As expected, all the designs are very sensitive to the range constraint. The designs are also sensitive to the field performance constraints. The design visualization revealed that the second segment climb gradient constraint was a limiting factor in all the designs. It was also found that the wing mounted engines SBW and tip mounted engines SBW designs are more constrained than the cantilever wing optimum and fuselage mounted engines SBW designs.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    The Role of Constraints in the MDO of a Cantilever and Strut-B raced Wing Transonic Commercial Transport Aircraft


    Additional title:

    Sae Technical Papers


    Contributors:
    Ko, A. (author) / Grossman, B. (author) / Haftka, R.T. (author) / Mason, W. H. (author)

    Conference:

    World Aviation Congress & Exposition ; 2000



    Publication date :

    2000-10-10




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    The Role of Constraints in the MDO of a Cantilever and Strut-Braced Wing Transonic Commercial Transport Aircraft

    Ko, A. / Grossman, B. / Mason, W. H. et al. | British Library Conference Proceedings | 2000




    Multidisciplinary Design Optimization of a Transonic Commercial Transport with a Strut-Braced Wing

    Ko, A. / Naghshineh-Pour, A. / Grossman, B. et al. | SAE Technical Papers | 1999