Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively. The simulation results show that the proposed approach is a suitable tool to handle the nonlinearities in the vehicle dynamics, the complication of the multivehicle merging scenario, and the presence of modeling uncertainties and measurement noise.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons


    Additional title:

    Sae Int. J. Trans. Safety


    Contributors:


    Publication date :

    2021-10-25


    Size :

    19 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English






    Implementation of Deconfliction in Multivehicle Autonomous Systems

    A. P. Melander / N. D. Powel / E. Lalish et al. | NTIS | 2010


    INVITED IMPLEMENTATION OF DECONFLICTION IN MULTIVEHICLE AUTONOMOUS SYSTEMS

    Melander, A. / Powel, N. / Lalish, E. et al. | British Library Conference Proceedings | 2010


    Decentralized Cooperative-Control Design for Multivehicle Formations

    Weitz, Lesley A. / Hurtado, John E. / Sinclair, Andrew J. | AIAA | 2008